• A personal note on IGBP and the social sciences


    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution


    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .
Published: November 6, 2015

Using palaeo-climate comparisons to constrain future projections in CMIP5

Climate of the Past (2014)

Schmidt G A, Annan J D, Bartlein P J, Cook B I, Guilyardi E, Hargreaves J C, Harrison S P, Kageyama M, LeGrande A N, Konecky B, Lovejoy S, Mann M E, Masson-Delmotte V, Risi C, Thompson D, Timmermann A, Tremblay L-B, Yiou P

DOI: 10.5194/cp-10-221-2014

Vol 10, Issue 1, pp 221–250

Abstract

We present a selection of methodologies for using the palaeo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to attempt to constrain future climate projections using the same models. The constraints arise from measures of skill in hindcasting palaeo-climate changes from the present over three periods: the Last Glacial Maximum (LGM) (21 000 yr before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of palaeo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with palaeo-climate information give demonstrably different future results than the rest of the models. We also explore cases where comparisons are strongly dependent on uncertain forcing time series or show important non-stationarity, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the palaeo-climate simulations to help inform the future projections and urge all the modelling groups to complete this subset of the CMIP5 runs.

Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84


    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83


    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...
RECOMMENDED