• A personal note on IGBP and the social sciences


    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution


    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .
Published: November 4, 2015

The emerging anthropogenic signal in land–atmosphere carbon-cycle coupling

Nature Climate Change (2014)

Lombardozzi D, Bonan G B and Nychka D W

DOI: 10.1038/nclimate2323

Vol 4, pp 796–800

Abstract

Earth system models simulate prominent terrestrial carbon-cycle responses to anthropogenically forced changes in climate and atmospheric composition over the twenty-first century. The rate and magnitude of the forced climate change is routinely evaluated relative to unforced, or natural, variability using a multi-member ensemble of simulations. However, Earth system model carbon-cycle analyses do not account for unforced variability. To investigate unforced terrestrial carbon-cycle variability, we analyse ensembles from the Coupled Model Intercomparison Project (CMIP5), focusing on the Community Climate System Model (CCSM4). The unforced variability of CCSM4 is comparable to that observed at the Harvard Forest eddy covariance flux tower site. Over the twenty-first century, unforced variability in land–atmosphere CO2 flux is larger than the forced response at decadal timescales in many areas of the world, precluding detection of the forced carbon-cycle change. Only after several decades does the forced carbon signal consistently emerge in CCSM4 and other models for the business-as-usual radiative forcing scenario (RCP8.5). Grid-cell variability in time of emergence is large, but decreases at regional scales. To attribute changes in the terrestrial carbon cycle to anthropogenic forcings, monitoring networks and model projections must consider the timescale at which the forced biogeochemical response emerges from the natural variability.

Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84


    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83


    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...
RECOMMENDED