• A personal note on IGBP and the social sciences

    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution

    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .

The application and interpretation of Keeling plots in terrestrial carbon cycle research

Global Biogeochemical Cycles (2003)
Pataki D, Ehlering J R, Flanagan L B, Yakir D, Bowling D R, Still C J, Buchmann N, Kaplan J O and Berry J A (eds)
Doi: 10.1029/2001GB001850
Vol 17; Issue 1; pp. 1-14

Photosynthesis and respiration impart distinct isotopic signatures to the atmosphere that are used to constrain global carbon source/sink estimates and partition ecosystem fluxes. Increasingly, the “Keeling plot” method is being used to determine the carbon isotope composition of ecosystem respiration (δ13CR) in order to better understand the processes controlling ecosystem isotope discrimination. In this paper we synthesize emergent patterns in δ13CR by analyzing 146 Keeling plots constructed at 33 sites across North and South America. In order to interpret results from disparate studies, we discuss the assumptions underlying the Keeling plot method and recommend standardized methods for determining δ13CR. These include the use of regression calculations that account for error in the x variable, and constraining estimates of δ13CR to nighttime periods. We then recalculate δ13CR uniformly for all sites. We found a high degree of temporal and spatial variability in C3 ecosystems, with individual observations ranging from −19.0 to −32.6‰. Mean C3 ecosystem discrimination was 18.3‰. Precipitation was a major driver of both temporal and spatial variability of δ13CR, suggesting (1) a large influence of recently fixed carbon on ecosystem respiration and (2) a significant effect of previous climatic effects on δ13CR. These results illustrate the importance of water availability as a key control on atmospheric 13CO2 and highlight the potential of δ13CR as a useful tool for integrating environmental effects on dynamic canopy and ecosystem processes.

Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84

    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83

    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...