• A personal note on IGBP and the social sciences

    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution

    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .

Physical basis of coastal adaptation on tropical small islands

Sustainability Science (2013)

Forbes D L, James T S, Sutherland M and Nichols S E

Physical basis of coastal adaptation on tropical small islands. In: Understanding and Managing Coastal Change in Small Islands (Hay J E, Forbes D L and Mimura N, eds)

DOI: 10.1007/s11625-013-0218-4

Vol 8, pp 327–344


Small tropical islands are widely recognized as having high exposure and vulnerability to climate change and other natural hazards. Ocean warming and acidification, changing storm patterns and intensity, and accelerated sea-level rise pose challenges that compound the intrinsic vulnerability of small, remote, island communities. Sustainable development requires robust guidance on the risks associated with natural hazards and climate change, including the potential for island coasts and reefs to keep pace with rising sea levels. Here we review these issues with special attention to their implications for climate-change vulnerability, adaptation, and disaster risk reduction in various island settings. We present new projections for 2010–2100 local sea-level rise (SLR) at 18 island sites, incorporating crustal motion and gravitational fingerprinting, for a range of Intergovernmental Panel on Climate Change global projections and a semi-empirical model. Projected 90-year SLR for the upper limit A1FI scenario with enhanced glacier drawdown ranges from 0.56 to 1.01 m for islands with a measured range of vertical motion from −0.29 to +0.10 m. We classify tropical small islands into four broad groups comprising continental fragments, volcanic islands, near-atolls and atolls, and high carbonate islands including raised atolls. Because exposure to coastal forcing and hazards varies with island form, this provides a framework for consideration of vulnerability and adaptation strategies. Nevertheless, appropriate measures to adjust for climate change and to mitigate disaster risk depend on a place-based understanding of island landscapes and of processes operating in the coastal biophysical system of individual islands.

Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84

    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83

    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...