• A personal note on IGBP and the social sciences


    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution


    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .

How positive is the feedback between climate change and the carbon cycle?

Tellus (2002)
Friedlingstein P, Cox P and Rayner P (eds)
ISSN: 02806509
Doi: 10.1034/j.1600-0889.2003.01461.x
Vol 55; Issue 2; pp. 692-700
Abstract

Future climate change induced by atmospheric emissions of greenhouse gases is believed to have a large impact on the global carbon cycle. Several offline studies focusing either on the marine or on the terrestrial carbon cycle highlighted such potential effects. Two recent online studies, using oceanatmosphere general circulation models coupled to land and ocean carbon cycle models, in- vestigated in a consistent way the feedback between the climate change and the carbon cycle. These two studies used observed anthropogenic CO2 emissions for the 18601995 period and IPCC sce- narios for the 19952100 period to force the climate carbon cycle models. The study from the Hadley Centre group showed a very large positive feedback, atmospheric CO2 reaching 980 ppmv by 2100 if future climate impacts on the carbon cycle, but only about 700 ppmv if the carbon cy- cle is included but assumed to be insensitive to the climate change. The IPSL coupled climate carbon cycle model simulated a much smaller positive feedback: climate impact on the carbon cycle leads by 2100 to an addition of less than 100 ppmv in the atmosphere. Here we perform a detailed feedback analysis to show that such differences are due to two key processes that are still poorly constrained in these coupled models: first Southern Ocean circulation, which primarily controls the geochemical uptake of CO2, and second vegetation and soil carbon response to global warming. Our analytical analysis reproduces remarkably the results obtained by the fully coupled models. Also it allows us to identify that, amongst the two processes mentioned above, the latter (the land response to global warming) is the one that essentially explains the differences between the IPSL and the Hadley results.

GAIM
Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84


    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83


    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...
RECOMMENDED