• A personal note on IGBP and the social sciences


    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution


    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .

Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater

Environmental Science and Technology (2005)
Jones C E and Carpenter J L (eds)
Doi: 10.1021/es050563g
Vol 39; Issue 16; pp. 6130-6137
Abstract

Ultraviolet−visible absorption spectroscopy and purge-and-trap GC−MS were used to determine the rates and products of the photodissociation of low concentrations of CH2I2, CH2IBr, and CH2ICl in water, saltwater (0.5 M NaCl), and seawater in natural sunlight. Photoproducts of these reactions include iodide (I-) and, in salt- and seawater environments, CH2XCl (where X = Cl, Br, or I). Thus, CH2ICl was produced during CH2I2 photolysis (with a molar yield of 35 ± 20%), CH2BrCl from CH2IBr photolysis, and CH2Cl2 from CH2ICl photolysis (in lower yields of 6−10%). Formation of these chlorine-atom-substituted products may be via direct reaction of Cl- with either (A) the isopolyhalomethane photoisomer or associated ion pair (e.g., CH2I+−I-) or (B) the initially produced CH2I• photofragment. Estimated quantum yields for photodissocia tion were 0.62 ± 0.09, 0.17 ± 0.03, and 0.26 ± 0.06 for CH2I2, CH2IBr, and CH2ICl, respectively, in 0.5 M NaCl, with only small differences from these values in water and seawater. The much higher quantum yield of CH2I2 photolysis compared to CH2IBr and CH2ICl photolysis may be explained by the higher yield of the isodiiodomethane photoisomer of CH2I2, resulting in reduced geminate recombination of the initially produced radical photofragments back to the parent molecule. We use a radiative transfer model with measured absorption cross-sections in saltwater to calculate seasonal values of CH2I2, CH2IBr, and CH2ICl photodissociation in surface seawater at midlatitudes (50° N) and show that a significant proportion of CH2ICl in surface seawater may arise from CH2I2 photodecomposition. We also suggest that surface seawater photolysis of CH2I2 over an 8 h period may contribute up to 10% of the surface seawater I- levels, with implications for the increased deposition of O3 to the surface ocean.

Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84


    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83


    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...
RECOMMENDED