• A personal note on IGBP and the social sciences


    Humans are an integral component of the Earth system as conceptualised by IGBP. João Morais recalls key milestones in IGBP’s engagement with the social sciences and offers some words of advice for Future Earth.
  • IGBP and Earth observation:
    a co-evolution


    The iconic images of Earth beamed back by the earliest spacecraft helped to galvanise interest in our planet’s environment. The subsequent evolution and development of satellites for Earth observation has been intricately linked with that of IGBP and other global-change research programmes, write Jack Kaye and Cat Downy .

Comparing global models of terrestrial net primary productivity (NPP)

Global Change Biology (1999)
Cramer W and Field C B (eds)
Doi: 10.1046/j.1365-2486.1999.00009.x
Vol 5; Issue S1; No iii; pp. 1-15
Abstract

Seventeen global models of terrestrial biogeochemistry were compared with respect to annual and seasonal fluxes of net primary productivity (NPP) for the land biosphere. The comparison, sponsored by IGBP-GAIM/DIS/GCTE, used standardized input variables wherever possible and was carried out through two international workshops and over the Internet. The models differed widely in complexity and original purpose, but could be grouped in three major categories: satellite-based models that use data from the NOAA/AVHRR sensor as their major input stream (CASA, GLO-PEM, SDBM, SIB2 and TURC), models that simulate carbon fluxes using a prescribed vegetation structure (BIOME-BGC, CARAIB 2.1, CENTURY 4.0, FBM 2.2, HRBM 3.0, KGBM, PLAI 0.2, SILVAN 2.2 and TEM 4.0), and models that simulate both vegetation structure and carbon fluxes (BIOME3, DOLY and HYBRID 3.0). The simulations resulted in a range of total NPP values (44.4–66.3 Pg C year–1), after removal of two outliers (which produced extreme results as artefacts due to the comparison). The broad global pattern of NPP and the relationship of annual NPP to the major climatic variables coincided in most areas. Differences could not be attributed to the fundamental modelling strategies, with the exception that nutrient constraints generally produced lower NPP. Regional and global NPP were sensitive to the simulation method for the water balance. Seasonal variation among models was high, both globally and locally, providing several indications for specific deficiencies in some models.

GAIM
Share this page
Tell a friend (opens in new window)
Follow us

Please note!

IGBP closed at the end of 2015. This website is no longer updated.

No events available

  • Global Change Magazine No. 84


    This final issue of the magazine takes stock of IGBP’s scientific and institutional accomplishments as well as its contributions to policy and capacity building. It features interviews of several past...

  • Global Change Magazine No. 83


    This issue features a special section on carbon. You can read about peak greenhouse-gas emissions in China, the mitigation of black carbon emissions and the effect of the 2010-2011 La Niña event on gl...
RECOMMENDED